SELECTED PAPERS FROM THE JAPANESE CONFERENCE ON THE ADVANCEMENT OF ASSISTIVE AND REHABILITATION TECHNOLOGY
The Assistive Technology Research Series (ATR) aims to disseminate and archive assistive technology research summaries widely through publishing proceedings, monographs, and edited collective works. The series aspires to become the primary world-wide source of information in assistive technology research, through publishing state-of-the-science material across all continents. ATR defines assistive technology (AT) as any tool, equipment, system, or service designed to help develop, maintain or improve a person with a disability to function in all aspects of his or her life. Assistive technology helps people of all ages who may have a broad range of disabilities or limitations. The ATR series will accept manuscripts and proposals for a wide range of relevant topics.

Editor-in-Chief:
Rory A. Cooper

Editorial Board:

Volume 28

Recently published in this series

Vol. 27. J.F.M. Molenbroek, J. Mantas and R. de Bruin (Eds.), A Friendly Rest Room: Developing Toilets of the Future for Disabled and Elderly People
Vol. 24. P. Topo and B. Östlund (Eds.), Dementia, Design and Technology – Time to Get Involved
Vol. 23. M. Cabrera and N. Malanowski (Eds.), Information and Communication Technologies for Active Ageing – Opportunities and Challenges for the European Union

ISSN 1383-813X (print)
ISSN 1879-8071 (online)
Selected Papers from the Japanese Conference on the Advancement of Assistive and Rehabilitation Technology
23rd JCAART 2008, Niigata

Edited by
Hisaichi Ohnabe
Niigata University of Health and Welfare, Japan
University of Pittsburgh, USA

Masayoshi Kubo
Niigata University of Health and Welfare, Japan

Diane M. Collins
University of Pittsburgh, USA

and

Rory A. Cooper
University of Pittsburgh and Department of Veterans Affairs, USA

IOS Press
Amsterdam • Berlin • Tokyo • Washington, DC
Foreword

The Rehabilitation Engineering Society of Japan (RESJA) was established in March 1986. RESJA is an organization whose focus is the application of science and technology to the rehabilitation process. The membership of RESJA includes rehabilitation professionals (engineers, medical staff, teachers of handicapped children, etc), providers of equipment and services (manufacturers and suppliers), and consumers (disabled persons).

RESJA aims to promote mutual understanding among these groups so that they can better serve the actual needs of people with disabilities who would benefit from the application of rehabilitation engineering to their special needs. RESJA is growing, and has a current membership of almost 1,000.

The activities of RESJA are as follows:

1. Conference of rehabilitation engineering
2. Special Interest Groups (SIGs): These are 10 SIGs
3. RESJA Journal (Japanese), which is issued four times a year and publishes the work of clinicians in the rehabilitation field
4. Technical Aids competition: since 1989, the society has held an annual contest for the makers of Technical Aids; the RESJA prize is awarded at the annual JCAART or HCR meeting.

Although RESJA has facilitated these activities for some time, up to now they have not issued any publications in English. This publication has been made possible by the hard work of Dr. Hisaichi Ohnabe, acting as the executive committee chairman for the Conference of Rehabilitation Engineering in Niigata (23rd JCAART). The participation of IOS Press in publishing this book is greatly appreciated. We are most grateful to you and we are sure that the book will be widely read.

As to the future: let us continue our cooperation to develop assistive technology for those people who most need it: through the application of rehabilitation engineering.

Kiyomi Matsuo
President, Rehabilitation Engineering and Assistive Society of Japan
Saga University
Preface

Creating the Welfare-Driven City “QOL4ALL”

The welfare-driven city is, and it must be, a city for ALL people. The quality of life (QOL) of the older adults and people with disabilities in our society depends on there being a high quality of life for everybody. Able-bodied younger people must understand that in the future they are also likely to need the welfare services that are now being provided to others – people with disabilities and older adults – because they may also one day develop a disability and – if they are lucky – they too will become older. Rehabilitation engineering and assistive technology is firmly placed to drive such a future; certainly it can contribute through collaboration with older people, those who have special needs and many other specialists: for instance physical therapists, occupational therapists, nurses, policy makers, educators and so on.

I am sure that there are people here at 23rd JCAART who joined us in Niigata in 2008 and who can contribute: together we have laid the strong foundations that will create such a welfare-driven city, providing QOL4ALL.

We take this opportunity to thank Dr. R.A. Cooper (editor-in-chief) for providing the opportunity to publish this book and tell people in the wider world about rehabilitation engineering and assistive technology in Japan; the first super-aged society: a first in RESJA history. I am proud of our contribution from Niigata. We will contribute more in the future in this field, because we are the front runner among super-aged societies.

An international meeting to exchange wheelchair repair technology was held at the same time, contributing to extending the knowledge from the conference to technical high school students and volunteers. We would like to thank all of the authors for their contributions to the conference and to this book. Special thanks go to Dr. Diane M. Collins and also Dr. Don Parkes for proof reading the draft. Finally thank you to IOS press for their encouragement and patience.

At the final stage of this draft, we had the biggest disaster from earthquake, tsunami, and an unexpected radiological emergency in Japan. We hope this publication will encourage the people for the revival of Japan.

Hisaichi Ohnabe, Ph.D.
Associate Editor (RESJA)
Chair, Executive Committee of 23rd JCAART
Niigata University of Health & Welfare
(University of Pittsburgh)
Preface

Interprofessional Education and Rehabilitation Engineering

In the 21st century, Japan became a super-aged society. The mean life expectancy for men is 79 years, for women 86 years; an average of 82 years. Healthy life expectancy is the extent of a capacity for independent living, which is usually several years shorter than the mean life expectancy. A two year extension of independent living is the current official target set by health policy in Japan.

Although we have the cover of some types of medical and long-term insurances, we do have problems in health and social care, such as differences in service and care provision between cities and rural areas. This is due to a shortage of medical professionals in the countryside and the lack of insurance cover to fund services due to loss of employment. The rapid rate of increase in the elderly population has resulted in an increase in medical, health and social care expenditure, but the delivery of more and better seamless services between health and social care, from the hospital or clinic to the community, is nevertheless required.

To meet the many and varied needs of the elderly, a team approach in health and social care is vital in the super-aged society. Interprofessional education and collaborative practice is therefore essential. So what is interprofessional education? According to the definition of CAIPE (the Centre for the Advancement of Interprofessional Education in the UK) it involves members (or students) of two or more professions, associated with health or social care, engaged in learning with, from and about each other.

The Japanese Association for Interprofessional Education (JAIPE) was founded in 2008 to facilitate and spread interprofessional learning. In the annual scientific meeting, professionals from health-related fields report and exchange their experiences and ideas for collaborative practice, and faculty and students from the higher education institutions report the outcomes of their interprofessional learning. As the number of elderly people increases still further it will become even more important for all health-related professionals (and students) to understand rehabilitation engineering and assistive technology, including not only the manufacture of prosthetics, orthotics and other equipment, as well as wheelchairs and robots, but managing and improving users’ quality of life (QOL) and extending their capacity for independent living.

A department of prosthetics & orthotics and assistive technology was founded in our university in 2007. Students and graduates share their knowledge of users’ body function, body structure and impairments with other professionals (students) in health and social care in every academic year from the first to the fourth. They gain a thorough understanding of the background, including environmental and personal factors. Together, they devise strategies to improve the quality of life for patients and clients, actively involving the elderly and other service users, with the objective of becoming excellent supporters of their QOL.
Such interprofessional education and learning opportunities must be included in the professional courses of universities and colleges at both undergraduate and postgraduate level, as well as being integrated into continuing education for all health and social care professions. Upstream implementation of interprofessional education will result in fruitful downstream outcomes during the subsequent professional careers of these students, and the eventual improvement of QOL for service users.

Hideaki E. Takahashi
President, 23rd JCAART 2008
Chair of the Board, Japan Association for the Interprofessional Education,
President Emeritus, Niigata University of Health and Welfare
Working Group

Associate Editor (RESJA): Hisaichi Ohnabe (Niigata University of Health and Welfare, Japan and University of Pittsburgh, USA, Hohnabe@aol.com)
Masayoshi Kubo (Niigata University of Health and Welfare, Japan)
Diane M. Collins (University of Pittsburgh, USA)
Eri Saito (Niigata University of Health and Welfare, Japan)
Saki Kasuya (Kobe Gakuin University, Japan)
Takenobu Inoue (National Rehabilitation Center for Persons with Disabilities, Japan)
Yukio Agarie (Niigata University of Health and Welfare, Japan)
Hiroshi Otsuka (Niigata University of Health and Welfare, Japan)
Hisashi Iizuka (Niigata University of Health and Welfare, Japan)
Kazuyo Torabayashi (ASSIST CO., LTD, Japan)
Sara L. Peterson (University of Pittsburgh, USA)
Daniel J. Fisher (University of Pittsburgh, USA)
Contents

Foreword v
 Kiyomi Matsuo

Preface vii
 Hisaichi Ohnabe

Preface ix
 Hideaki E. Takahashi

Working Group xi

Report of Japanese Conference for the Advancement of Assistive and
Rehabilitation Technology, Held in Niigata, Japan 2008 (23rd JCAART 2008) 1
 Hisaichi Ohnabe, Yukio Agarie, Hiroshi Otsuka and Saki Kasuya

Braille Reader Using Cellular Phone with Embedded Camera 6
 Kazuyoshi Yoshino and Shanjun Zhang

Development and Evaluation of Seated Posture Measurement Software Enabling
Application of the ISO16840-1 Standard in a Clinical Setting 16
 Takashi Handa and Hideyuki Hirose

“Go” Play Set After Application of Universal Design 27
 Jiro Sagara, Takahito Saiki, Shosaku Ota, Tomoyuki Sowa, Iciro Tanioka,
 Masaki Matsumura, Setsuo Morino and Mitsuhisa Yukawa

Switch Adaptation to Children with Cerebral Palsy Based on Three-Axis
Acceleration Analysis 33
 Tetsuya Hirotomi and Yoshihito Hirose

Day-Care Rehabilitation Support System for Higher Brain Dysfunction 40
 Yukari Isobe, Tetsuya Hirotomi and Masato Kobayashi

Standardization of J-PIADS (Psychosocial Impact of Assistive Devices Scale) 49
 Takenobu Inoue, Tomoko Kamimura, Kazuhiko Sasaki, Koichi Mori,
 Naomi Sakai, Yoshio Fujita, Misato Nihei and Atsushi Tsukada

Measurement of Forces Applied to a Vertical Grab Bar for Elderly People to Use
in Coming to Stand from a Toilet Seat 55
 Hideki Miyoshi, Mariko Goda and Naoto Watanabe

Wheelchair Survey at an Aged-Care Nursing Home 61
 Shinya Sekikawa

Development of Power Wheelchair with Support Functions for Learning How
to Operate – Trial at a School for Children with Physical or Developmental
Disabilities 67
 Kiyohiro Omori, Yoshimi Sugimoto and Ichiro Kitayama
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Development of Straight-Ahead System of Power Wheelchair on a Slope</td>
<td>72</td>
</tr>
<tr>
<td>Makoto Ohara, Hisashi Tamaki, Tsutomu Hashizume, Kiyohiro Omori and Masato Nagayoshi</td>
<td></td>
</tr>
<tr>
<td>Overview and Future Prospect of the “Flying Wheelchair” – International Voluntary Activity</td>
<td>78</td>
</tr>
<tr>
<td>Hisaichi Ohnabe, Hiroshi Sugimoto, Koji Inoue, Kouichi Akiyama, Keiji Morioka and Akira Yazawa</td>
<td></td>
</tr>
<tr>
<td>Development of Rehabilitation Systems for Upper Limbs: EMUL, Robotherapist, and PLEMO</td>
<td>84</td>
</tr>
<tr>
<td>Junji Furusho, Takehito Kikuchi and Makoto Haraguchi</td>
<td></td>
</tr>
<tr>
<td>A Comparison of Eye-Tracking Data, Between Teachers and Non-Teachers, in a Child’s Writing Behavior</td>
<td>93</td>
</tr>
<tr>
<td>Mitsue Takahara, Yoshimi Tsuda and Toshiaki Hashimoto</td>
<td></td>
</tr>
<tr>
<td>Developing Assistive Technologies for an Advanced Inhome-Medical Care System by 2025 in Japan</td>
<td>99</td>
</tr>
<tr>
<td>Kazuhiro Shigetoh</td>
<td></td>
</tr>
<tr>
<td>Development of a Powered Wheelchair Interface Using a Neural Network System for People with Disabilities</td>
<td>105</td>
</tr>
<tr>
<td>Misato Nihei, Kazuya Kitamura, Misono Sakai, Haruhiko Sato, Motoki Shino, Minoru Kamata and Takenobu Inoue</td>
<td></td>
</tr>
<tr>
<td>Design of Seat Mechanism for Multi-Posture Controllable Wheelchair</td>
<td>113</td>
</tr>
<tr>
<td>Ju-hwan Bae and Inhyuk Moon</td>
<td></td>
</tr>
<tr>
<td>24-Hour Records of Daily Activity for Persons with Severe Physical Disabilities and Demands of Assistive Devices</td>
<td>120</td>
</tr>
<tr>
<td>Toshinori Maruoka, Takenobu Inoue and Koichi Mori</td>
<td></td>
</tr>
<tr>
<td>Development of a Video Game Control Interface for PMD</td>
<td>127</td>
</tr>
<tr>
<td>Yoshiyuki Takahashi, Motoku Takagi, Yukie Kayano, Ikuo Yoneda and Takeshi Shigenari</td>
<td></td>
</tr>
<tr>
<td>Assist Systems for Traveling and Planning for the Visually Impaired</td>
<td>132</td>
</tr>
<tr>
<td>Yoshinobu Maeda and Takashi Konishi</td>
<td></td>
</tr>
<tr>
<td>Development of the Working Chair that Eases Standing and Sitting Safely for Patients with Rheumatism</td>
<td>139</td>
</tr>
<tr>
<td>Toshiya Nakamura and Tsutomu Hashizume</td>
<td></td>
</tr>
<tr>
<td>Development of a Mouthpiece Type Remote Controller for People with Disabilities – Basic Investigation of the Specifications and Characteristics of the Remote Controller</td>
<td>146</td>
</tr>
<tr>
<td>Shojiro George Terashima, Eiichi Satoh, Kazuo Kotake and Isao Sakamaki</td>
<td></td>
</tr>
<tr>
<td>Ethical Issues on Clinical Tests Involving Human Participants in Research and Development of Assistive Products – Towards Institutional Reviews on Clinical Tests of Assistive Products in Japan</td>
<td>156</td>
</tr>
<tr>
<td>Motoi Suwa</td>
<td></td>
</tr>
</tbody>
</table>
Assistive Technology for Promoting Self-Enhancement of Persons with Dementia 161
Tomohiro Takezawa, Takenobu Inoue, Rina Ishiwata, Kazuo Miyanaga and Isao Hoshiba

Computer Notebook with Thai and English Processing for the Visually Impaired 166
Pichaya Tandayya, Wannarat Suntiamorntut, Suitorn Witosurapot, Chatchai Jantaraprim, Worraprot Chukumnird, Vorapol Thinnagonsutibut, Thanatip Limna, Suppachai Madue and Wiraman Niyompol

A Swallowing-Assisted Device for Dysphagic Patients 173
Pornchai Phukpattaranont, Sawit Tanthanuch, Kanadit Chetpatananondh, Surapon Tienmontri, Booncharoen Wongkittisuksa and Chusak Limsakul

A Proposal for the Systematic Development of Standards on Assistive Products 179
Katsushi Ebitani, Shigeru Tanaka and Members of NITE Technical Committee on Assistive Products

Building Awareness and Advocacy for QOL 4 ALL with Assignments in Health Careers Education 185
M.E. Miller

Safety Issues for Manual Wheelchairs Aboard ‘Barrier-Free’ Ships (II) – Prediction of Torque Requirements to Control Wheelchairs by Observed Wave Height 191
Fumihiro Mizuguchi, Akihiko Higashi, Minako Shinya, Shunsuke Sakuma and Hisaichi Ohnabe

iARM Improves Quality of Life; the Results of a Redesign of the Assistive Robotic Manipulator (Arm) 198
Harry J.A. Stuyt and Gert Willem R.B.E. Römer

Subject Index 205
Author Index 207