Surgical Exposures in Orthopaedics

The Anatomic Approach

Fifth Edition
Stanley Hoppenfeld, M.D.
Clinical Professor of Orthopaedic Surgery
Albert Einstein College of Medicine
Attending Physician
Jack D. Weiler Hospital of the Albert Einstein College of Medicine
Montefiore Hospital and Medical Center
Bronx, New York

Piet de Boer, M.A., F.R.C.S.
Visiting Lecturer
University of Rijeka Medical School
Department of Anatomy
Croatia
CEO
Medical Education Consultants GmbH
Zurich, Switzerland

Richard Buckley, M.D., F.R.C.S.C.
Associate Professor of Orthopaedic Traumatology
University of Calgary
Head, Orthopaedic Trauma
Department of Surgery
Division of Orthopaedics
Foothills Hospital
Calgary, Alberta, Canada

Illustrations by Hugh A. Thomas
To my wife Norma, my sons Jon-David, Robert, and Stephen, and my parents Agatha and David, all in their own special way have made my life full and made this book possible.

S.H.

To my wife Suzi, my three children James, Kate and Jan and my two grandchildren Rowan and Finn

P.de B.

To my wife Lois, who organizes my “whole” life and makes it manageable, whom I respect greatly, and my two children, Shannon and Andrew.

R.B.
Preface

One of the first pieces of advice given to one of the authors just before publication of the first edition of this book was not to spend too much time on the preface. He was assured that “few if any people read prefaces.” So why then create another preface for the fifth edition? The answer must be to inform potential readers of the changes that have been made—why they were made and what is in these changes for the reader.

The changes that have been made fall into two categories—content and format.

The first edition of his book was printed in the United States on a classical printing press. All subsequent editions have been electronic and about 50% of sales of the fourth edition were in the form of an electronic book. Research has shown that although younger surgeons generally prefer electronic books, large numbers of them still like a printed copy. One respondent commented that she found “navigating a printed book easier than navigating an electronic one.” We have therefore decided to make the fifth edition available as a single package—electronic and printed.

One of the continuing successes of the book has been the diagrams. The ability of well-drawn diagrams to convey three-dimensional images is remarkable. Videos of surgical approaches, which are now freely available on YouTube, are often disappointing. Videos shot during live surgery with a single camera often fail to show what the viewer needs to see. The fifth edition includes videos of 17 surgical approaches. The videos were shot in HD with three different cameras on specially prepared cadaveric material. When the video is not perfectly clear we have included diagrams from the book using a split screen technique. In this way we hope to eliminate the lack of clear three-dimensional clarity that plagues most surgical approach videos.

The common theme in the evolution of surgical approaches in orthopaedics and traumatology over the past 32 years since the publication of the first edition of the book has been the development of minimally invasive surgery. There have been two major drivers for this process—preservation of as much blood supply to the fracture site and creating as little soft tissue damage as possible to facilitate patient recovery following surgery.

The first edition of this book focused on subperiosteal dissection—the classic concept of orthopaedics surgery in the 1960s and 70s—“get to bone and stay there.” Subperiosteal dissection ensured that neighboring soft tissues were not damaged but came at a price—the destruction of local blood supply. The second edition of the book abandoned subperiosteal dissection except in exceptional circumstances (i.e., stripping supinator off the proximal radius) in favor of epiperiosteal dissection where the periosteum is preserved. The third edition introduced arthroscopy, which by that time had almost completely replaced open knee and much open shoulder surgery. The approaches for open meniscectomy are still described in this edition reflecting the need in certain developing countries but will almost certainly be excluded from the sixth edition.

The fourth edition introduced minimally invasive approaches to the proximal humerus, proximal tibia, and distal tibia as well as minimally invasive spinal approaches. What then caused us to change the contents of the book? First, our readers told us that certain existing approaches needed updating and clarification. The approaches needed for emergency decompression of a compartment syndrome of the lower leg and forearm have been enlarged and updated. We realize that this surgery needs to be performed as quickly as possible and may be done by junior surgeons who need as much help as they can get. Fixation of distal radial fractures has become routine in many countries and a classic approach has been added replacing the lower end of the AK Henry approach to the whole radius that was present in previous editions.

The advent of routine CT scanning of tibial plateau injuries has greatly clarified the fracture anatomy of these difficult injuries. The appreciation of the posterior elements in these injuries has led to the creation of two new surgical approaches to the tibial plateau—the posterior and posterolateral approaches.

Although acetabular surgery remains a highly specialized field that should only be done by experts or learners under expert supervision, we were aware that existing descriptions of the iliinguinal approach were inadequate. This approach has therefore been revised to show the key points especially the iliopsoas fascia—a structure that has never been adequately illustrated. The flip osteotomy of the greater trochanter described in the fourth edition had been updated to show the step technique and the surgical dislocation of the hip has been included for the first time.
The lateral approach to the metatarsophalangeal joint of the hallux has been added to complement the existing dorsal and dorsomedial approaches.

After much deliberation a minimally invasive anterior approach to the hip joint had been included. The literature has been confusing with regard to long-term benefit to the patient of minimally invasive hip surgery and disturbing articles have been published with regard to malposition of implants. This approach however seems to be well established and patients do seem to recover faster—hence its inclusion.

Finally the whole text has been revised and numerous small corrections made. This would have been impossible without the invaluable help of Dr. Peter S. Saubermann, facilitator in the ORTP, University of Basel, Switzerland who has painstakingly examined every line of text and every diagram and who has suggested invaluable changes.

The strength of this book remains what it has been since its inception—clear descriptions of surgical approaches complemented by diagrams made from the point of view of the surgeon. The classical approaches remain its most popular feature. Surgeons all around the world sometimes operate with a nurse holding the book open at a key diagram. We believe that the key to safe surgery is a sound knowledge of anatomy. Paradoxically as approaches become smaller and smaller the need for anatomical knowledge becomes greater. We feel therefore that this book with its title, *Surgical Exposures in Orthopaedics—The Anatomic Approach*, is more relevant today than it has ever been.

Preface to the Fourth Edition

Surgical Exposures in Orthopaedics—The Anatomic Approach was first published in 1984, 25 years ago. The standard surgical approach textbooks at the time were out of date and the principle of linking surgical anatomy to surgical approaches using incisive text and wonderfully clear diagrams (then in black and white) was greeted favorably by orthopaedists and trauma surgeons around the world. Throughout its history, this text has remained the number one best seller in its field. It has been translated into five languages and is extensively used around the world on all five continents. On many occasions, while travelling around the world to teach, the authors have been thanked by residents who have reported how the book has helped them, often in difficult and emergency situations when working either alone or poorly supervised. It is also clear that residents particularly value those classical surgical approaches first described by A.K. Henry in his book on extensile approaches.

Why, then, produce a fourth edition? Standard textbooks need to change to reflect those changes that occur within their sphere of interest. The difficulty with this is to differentiate between genuine and permanent changes in the practice of orthopaedics. The young surgeon must be presented with the subject in what can only be described as “the fashion of the time” that occurs in all branches of medicine, especially orthopaedics. In the first edition of the book, great emphasis was given to the concept of subperiosteal dissection. Subperiosteal dissection ensured that the surgical approach did not damage vital structures close to the bone, but the sacrifice was significant devitalization of the bone and its surrounding soft tissues. The preservation of the blood supply to the area to be exposed has been a consistent theme in the past 24 years. The second edition of the book saw abandonment of the concept of subperiosteal dissection and the establishment of epi-periosteal planes for surgical use.

Minimal access surgery has been present in orthopaedic surgery for many years. Intramedullary nailing, through a closed technique, did not expose the fracture site and preserved the fracture hematoma. Similarly, external fixation can be seen as an attempt to provide stability to a fracture site, while preserving the fracture hematoma and the natural healing processes that occur around the fracture. Arthroscopy is probably the best example of effective use of minimal access surgery, a fact recognized by the inclusion of standard arthroscopic techniques for the knee and shoulder in the third edition.

The fourth edition includes many new approaches involving minimal access surgery. These approaches are used mainly in the field of traumatology and reflect the major surgical interest of two of the authors and the majority of their resident readers. New minimal access approaches are included for the humerus, distal femur, and proximal and distal tibia. New external fixation approaches are included, especially bridging fixation. New approaches for the spine and calcaneus were conspicuously absent in previous editions, now part of this revision.

Minimal access surgery is a classic double edge sword. The purpose of the surgery is to preserve the biology around the site of traumatic injury and to minimize the associated soft-tissue damage in elective orthopaedic surgery. The cost of this technique is decreased visualization, and many of the techniques described require the use of imaging to be safe. C-arm technologies are now readily available throughout the world. Computer-assisted surgery is also growing rapidly, particularly in the field of joint replacement surgery.

A big danger of minimal access surgery is inadvertent damage to vital structures. It follows, therefore, that sound knowledge of underlying anatomy is even more critical for minimal access surgery than it is for conventional open approaches. Readers are earnestly advised to study the anatomical sections of the new approaches along with the classic approaches to ensure patient safety.

We feel that the fourth edition of the book now incorporates a comprehensive range of surgical approaches required for the treatment of patients with orthopaedic and traumatological complaints. Classic extensile surgical approaches, minimal access surgery, arthroscopy, and external fixation are all tools that a competent surgeon must be able to use to fully help patients.

Stanley Hoppenfeld, M.D.
Piet de Boer, M.A., F.R.C.S.
Richard Buckley, M.D., F.R.C.S.C.
Since its publication in 1984, *Surgical Exposures in Orthopaedics—The Anatomic Approach* has been the standard textbook for surgical approaches in orthopaedics and traumatology, regularly consulted by trainees as well as by experienced surgeons throughout the world. Its enduring success is evidence that it continues to meet a need in the practice of orthopaedics and traumatology. Why, then, a third edition?

The field of orthopaedics continues to evolve at a rapid rate. The previous edition introduced the concept of preserving blood supply and minimizing soft-tissue damage in fracture surgery in order to preserve the biological envelope of the injured bone as much as possible. In this edition we introduce three minimal access approaches to allow the surgeon to perform intramedullary nailing of the femur, tibia, and humerus. Again, we emphasize that "you should make every effort to preserve the soft-tissue attachments of the bone wherever possible. Only expose what you actually need to see to ensure an adequate surgical procedure."

A significant development in the field has been the enormous increase in arthroscopic procedures, which have largely replaced open operations within the knee joint. Arthroscopy of the shoulder joint, similarly, is a rapidly developing approach. Therefore, this new edition introduces arthroscopic approaches to these joints—specifically the anteromedial and anterolateral approaches to the knee joint, and the anterior and posterior approaches to the shoulder joint, which allow the surgeons to examine the joint and have proved acceptable to large numbers of surgeons for some time.

Although arthroscopic procedures have largely superseded open procedures and surgery in the developed world, surgeons still need to incorporate the classic surgical approaches to the knee. These approaches and knowledge of their underlying anatomy are useful when a surgeon has to deal with an open wound with associated ligament damage or when operating in countries where arthroscopy is not readily available.

The third edition also contains changes in the section on acetabular approaches, particularly in the posterior approach to the acetabulum, which has become the standard approach for these complex and challenging injuries. In addition, full color has been added to all the illustrations, enhancing their attractiveness as well as their verisimilitude.

Piet de Boer, M.A., F.R.C.S.

Stanley Hoppenfeld, M.D.
Preface

to the Second Edition

How do you make a good book better in a radically changing orthopaedic environment? By keeping to basics and heeding the requests of our fellow surgeons who have written to us over these past nine years, since the publication of the first edition.

The emphasis on the concept of internervous planes remains a hallmark of the book. The basic principle of “do not cut round structures” is further reinforced by adding color to the nerves, arteries, and veins, which enhances the clinical dimensions of the illustrations.

New surgical approaches have been added, such as the anterolateral approach to the shoulder, the anterolateral approach to the tibia, and an improved lateral approach to the hip.

A whole new section on approaches to the acetabulum and pelvis is presented. The chapter is enriched with numerous original detailed surgical and anatomic drawings.

A new chapter on safe routes for percutaneous insertion of external fixators into the long bones is offered. The illustrations with their insets provide three-dimensional clarity and location of the important neurovascular structures.

Although anatomy has clearly not changed in the past nine years, more emphasis has been given to the preservation of the blood supply to the bone during orthopaedic surgery. This concept is of particular importance in fracture surgery where the blood supply to the bone has often been disrupted by the original injury. Preservation of blood supply is achieved by maintaining the soft tissue envelope of the bone. The approaches described in this book necessarily describe exposure of the whole anatomical site; the illustrations demonstrate this. In clinical practice you will often only need part of the approach described. You should make every effort to preserve the soft tissue attachments of the bone wherever possible. Do not fall into the trap of stripping bone extensively to allow complete exposure of all sides of a fracture; dead bone does not unite in the fracture situation.

Only expose what you actually need to see to ensure an adequate surgical procedure. The concept of “biological fixation” of fractures relies on these principles.

Stanley Hoppenfeld, M.D.
Piet de Boer, M.A., F.R.C.S.
Preface to the First Edition

It has often been said that successful orthopaedic procedures are based on a simple principle: Get to bone and stay there. *Surgical Exposures in Orthopaedics: The Anatomic Approach*, the product of an anatomy course for orthopaedic surgeons that has been run at the Albert Einstein College of Medicine for the past 15 years, expands on the principle. The book explains the techniques of commonly used orthopaedic approaches and relates the regional anatomy of the area relevant to the approach.

Safety in surgery depends on knowledge of anatomy and technical skill. The two go hand in hand; one is useless without the other. Surgical skill can be learned only by practical experience under expert supervision. But the knowledge that underlies it must come from both book and dissection. Structurally, this book is divided into 11 chapters, each dealing with a particular area of the body. The most commonly performed approaches are described; we have omitted approaches designed only for one specific procedure—they are best understood in the original papers of those who first described them. Nevertheless, the vast majority of orthopaedic procedures can be safely and successfully accomplished through the approaches we have included.

Orthopaedics is a rapidly evolving field. New procedures are appearing at a prodigious rate; some are discarded in a comparatively short time. Thus, any book that concerns itself with the specifics of operative surgery inevitably becomes dated, sometimes even before publication. To avoid this problem, we have concentrated on getting to the bone or joint concerned, and not on what to do after. When applicable, we have included references to individual surgical procedures but without incorporating their details into our textbook.

The key to *Surgical Exposures in Orthopaedics* is a consistent organization throughout (see Table 1). Each approach is explained; then the relevant surgical anatomy of the area is discussed. When one or more approaches share anatomy, they are grouped together, with the relevant anatomical section at the end. The idea is for the surgeon to read the approach and anatomy sections together before attempting a given procedure, because once the anatomical principles of a procedure are fully understood, the logic of an approach becomes clear.

SURGICAL APPROACHES

The crucial element in successful surgical approaches is exploiting *internervous planes*. These planes lie between muscles—muscles supplied by different nerves. Internervous planes are helpful mainly because they can be used along their entire length without either of the muscles involved being denervated. These approaches can generally be extended to expose adjacent structures. Virtually all the classic extensible approaches to bone use internervous planes—a concept first described by A. K. Henry, who believed that if the key to operative surgery is surgical anatomy, then the key to surgical anatomy is the internervous plane.

The approach sections are structured as follows.

The introduction to each approach describes indications and points out the major advantages or disadvantages of the proposed surgery. Significant dangers are also outlined in this section.

Table 1 Chapter Outline

<table>
<thead>
<tr>
<th>I. Surgical Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Introduction)</td>
</tr>
<tr>
<td>Position of Patient on Operating Table</td>
</tr>
<tr>
<td>Landmarks and Incision</td>
</tr>
<tr>
<td>Internervous Plane</td>
</tr>
<tr>
<td>Superficial Surgical Dissection</td>
</tr>
<tr>
<td>Deep Surgical Dissection</td>
</tr>
<tr>
<td>Dangers</td>
</tr>
<tr>
<td>How to Enlarge the Approach</td>
</tr>
<tr>
<td>Local Measures</td>
</tr>
<tr>
<td>Extensible Measures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Applied Surgical Anatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
</tr>
<tr>
<td>Landmarks and Incision</td>
</tr>
<tr>
<td>Superficial Surgical Dissection and Its Dangers</td>
</tr>
<tr>
<td>Deep Surgical Dissection and Its Dangers</td>
</tr>
<tr>
<td>Special Anatomical Points</td>
</tr>
</tbody>
</table>
The position of the patient is critical to clear, full exposures, as well as to the comfort of the operating surgeon. Surgical landmarks form the basis for any incision; they are described with instructions on how to find them. The incision follows these key landmarks. Although the incisions described are generally straight, many surgeons prefer to use curved or zigzag incisions because they heal with less tension than do equivalent straight incisions.

The approaches often allow exposure of the whole length of a bone; usually, only part of an exposure is required for any given operation. The surgical dissection has been divided into superficial and deep surgical dissections for teaching purposes to reinforce the concept that each layer must be developed fully before the next layer is dissected. Adequate exposure depends on a systematic and deliberate technique that exploits each plane completely before deeper dissection begins.

The dangers of each approach are listed under four headings: nerves, vessels, muscles and tendons, and special points. The dangers are described, along with how to avoid them.

The approach section concludes with a description of how to enlarge the approach. All too often, the surgeon discovers that the incised exposure is inadequate. There are two ways in which the exposure can be enlarged: Local measures include extending skin incisions, repositioning retractors, detaching muscles, or even adjusting the light source; and extensile measures are ways in which an approach can be extended to include adjacent bony structures. In approaches through internervous planes, extensile measures may permit the exposure of the entire length of the bone.

ANATOMICAL SECTIONS

The anatomy of each approach begins with a brief overview of the muscular anatomy, along with the arrangement of the neurovascular structures.

The anatomy of the landmarks relates these structures to their surroundings. The anatomy of the skin incision describes the angle between the incision and the natural lines of skin cleavage first described by Langer—a relationship that may influence the size and prominence of the resultant scar. Nevertheless, the site of a skin incision must be determined largely by safety and effectiveness and not by cosmetic considerations. Skin incisions generally avoid cutting major cutaneous nerves; where they might, the danger is clearly stated.

The anatomy of the superficial and deep surgical dissection discusses the regional anatomy encountered during the approaches—not only the anatomy of the plane to be used but also that of adjacent structures that may appear if the surgeon strays out of plane. Perhaps the greatest value of knowing topographical anatomy is in cases of trauma, where the surgeon may explore wounds with confidence, aware of the potential dangers created by any given wound. Relevant clinical information on the anatomical structures is offered, but a comprehensive clinical picture is beyond the scope of this book. The origins, insertions, actions, and nerve supplies of relevant muscles are listed in legends under the muscles' illustrations.

The anatomical and surgical illustrations are drawn from the surgeon's point of view whenever possible, with the patient on the operating table, so that the surgeon can see exactly how the approach must look when he operates.

The anatomical terms used in Surgical Exposures in Orthopaedics are generally those used in modern anatomical textbooks. Terms now in orthopaedic usage sometimes differ from them; when that occurs (for instance, with the flexor retinaculum/transverse carpal ligament), both terms are given. Variation also occurs in usage on either side of the Atlantic; we have used those terms on which the authors (one American and one English) have reached consensus. It has been said that all of orthopaedic surgical approaches can be reduced to one line: “Avoid cutting round structures.” This book has been written to tell you how.

Stanley Hoppenfeld, M.D.
Piet de Boer, M.A., F.R.C.S.
Acknowledgments

This book reflects the accumulated experience of many people over many decades. We should like to thank those in particular who helped us during the writing of this book.

To Richard Hutton,
my long-term friend and editor, who adds organization and reality to our writings. His love of the English language is reflected in this book.

To Hugh Thomas,
my long-term friend and medical illustrator, who added clarity to the book by his imaginative original illustrations, which reflect anatomic knowledge and clinical detail. In preparing the artwork for Surgical Exposures in Orthopaedics—The Anatomic Approach, he managed to draw beautifully on two continents.

To Ray Coomaraswamy, M.D.,
for his help and guidance in writing the transabdominal and thoracotomy approaches to the spine. He has furthered his life experience by becoming a psychiatrist.

To David M. Hirsh, M.D.,
for his detailed, expert review of the chapter on the hip and for his guidance in its presentation and clinical details.

To Barnard Kleiger, M.D.,
for reviewing the chapters on the tibia and fibula and on the foot and ankle. He has been a source of inspiration to us during these years. We miss him.

To Roy Kulick, M.D.,
for reviewing the chapter on the hand several times and for giving it that little extra to help its clinical tone.

To Martin Levy, M.D.,
for his multiple reviews of the chapter on the knee and for his valuable suggestions and clarity of thought.

To Eric Radin, M.D.,
for reviewing parts of our book in its early stages, encouraging us, and making valuable suggestions.

To Arthur Sadler, M.D.,
for his review of the chapter on the femur.

To Leonard Seimon, M.D.,
for reviewing the medial approach to the hip and sharing his unusual surgical experiences with us.

To Neil Cobelli, M.D.,
Chairman of the Department of Orthopaedic Surgery at the Montefiore Medical Center and Director of Orthopaedic Surgery of the Albert Einstein College of Medicine, for his continued interest in teaching anatomy and surgical approaches to the resident staff.

To Jerry Sosler, M.D.,
for demonstrating and reviewing the retroperitoneal approach to the spine and his positive suggestions.

To Morton Spinner, M.D.,
for reviewing the chapters on the elbow and forearm, helping us with clinical details, and for sharing a lifetime of clinical and surgical experience.

To Keith Watson, M.D.,
for reviewing the chapter on the shoulder.

To the British Fellows,
who visit the Albert Einstein College of Medicine from St. Thomas Hospital in England each year. Each has made a major contribution to the educational program and to our Anatomy course: Clive Whaley, Robert Jackson, David Grubel-Lee, David Reynolds, Roger Weeks, Fred Heatley, Peter Johnson, Richard Foster, Kenneth Walker, Maldwyn Griffith, John Patrick, Paul Allen, Paul Evans, Robert Johnson, Martin Knight, Robert Simons, and David Dempster.

To the Anatomy Department of the Albert Einstein College of Medicine—in particular.

To France Baker-Cohen,
who worked closely with us in establishing the course each year, and whom we miss.
Acknowledgments

To Michael D’Alessandro,
who has kept the rooms and cadaver material for us.

To Dr. M. Bull,
Dr. E.M. Chisholm,
and the Examiners of the primary fellowship in London,
who convinced me that topographical anatomy was worth learning.

To Ronald Furlong,
Eric Denman,
and David Reynolds,
for their efforts in teaching me and others operative surgery.

To Marianne Broadbent,
Ken Peel,
and the nursing staff and ODAs at the York District Hospital and the Purey Cust Nuffield Hospital, York, for making surgery not only possible and safe, but also for their endless good humor, which makes surgery a pleasure.

To the operating staff and technicians of Princess Margaret Hospital, Swindon, and St. Thomas Hospital, London—and especially
Jim Lovegrove,
for making surgery possible.

To Alan Apley,
not only for providing the model for teaching, but also for writing a book that teaches.

To Professor Kinmonth,
Fred Heatley,
Malcolm Morrison,
and John Wilkinson,
for their generous help during my own orthopaedic training.

To the fellow physicians who have participated in teaching the Anatomy course over these many years:
Uriel Adar, M.D., Russell Anderson, M.D., Mel Adler, M.D.,
Martin Barschi, M.D., Robert Dennis, M.D., Michael DiStefano, M.D., Henry Elands, M.D., Aziz Eshraghi, M.D.,
Madgi Gabriel, M.D., Robert Ger, M.D., Ed Habermann, M.D.,
Armen Haig, M.D., Steve Harwin, M.D., John Katonah, M.D.,
Ray Koval, M.D., Lue Lapommaray, M.D., Al Larkins, M.D.,
Mark Lazansky, M.D., Shelly Manspeizer, M.D., Mel Manin, M.D.,
David Mendes, M.D., Basil Preefer, M.D., Leela Rangaswamy, M.D., Ira Rochelle, M.D., Art Sadler, M.D.,
Jerry Sallis, M.D., Eli Sedlin, M.D., Lenny Seimon, M.D.,
Dick Selznick, M.D., Ken Seslowe, M.D., Rashmi Sheth, M.D.,
Bob Shultz, M.D., Richard Seigel, M.D., Norman Silver, M.D.,
Irvin Spira, M.D., Moe Szporn, M.D.,
Richard Stern, M.D., Jacob Teladano, M.D., Alan Weisel, M.D., and Charles Weiss, M.D.

To the residents who have participated in the Orthopaedic Anatomy course at the “Einstein,” who have been a continual course of stimulation and inspiration.

To Muriel Chaleff,
who spent many hours helping to organize the Orthopaedic Anatomy course at the Albert Einstein College of Medicine. We owe her a great debt of gratitude for the kindness she has shown.

To Leon Strong,
my first Professor of Anatomy in Medical School for a stimulating introduction to anatomy.

To Emanuel Kaplan, M.D.,
whose great fund of anatomy and comparative anatomy was passed on to many of us while we were residents. His presence is still felt.

To Herman Robbins, M.D.,
for his professional support and teaching of anatomy during the many sessions held in the library of the old Hospital for Joint Diseases.

To Dr. and Mrs. N.A. Shore,
my long-term friends, who had a positive effect on my medical writings and clinical practice. We greatly miss them.

To Mr. Abraham Ivings,
my long-term friend and accountant, who kept the financial records, helping to make this book possible.

To Ruth Gottesman,
for making reading possible for all through her great endeavors at the Albert Einstein College of Medicine, Fisher Landau Center for the Treatment of Learning Disabilities.

To David “Sandy” Gottesman,
in appreciation of his friendship and professional dissection of the marketplace.

To Marie Capizzuto,
my long-term secretary and friend, for her professional help in making this book possible.

To Frank Ferrieri,
my long-term friend, in appreciation of his help. His loss is greatly felt.
To Mary Kearney,
my secretary, for help in communicating with the J.B.
Lippincott Company and mailing and calling, and calling,
and calling! We miss her.

To Tracy Davis,
for English editing of the Third Edition.

To Barbara Ferrari,
for her friendship, positive suggestions, and typing the

To our secretarial staff, and Mary Ann Becchetti, who
took hours out of their busy schedules to type, retype,
retype, and retype the text until it was perfect.

To J. Stuart Freeman, Jr.,
former Senior Editor at Lippincott Williams & Wilkins,
who has befriended me over these years and has been a
source of positive suggestions and inspiration.

To Robert Hurley,
former Executive Editor at Lippincott Williams & Wilkins,
in appreciation of his friendship and professional help in
structuring the Third Edition.

To Eileen Wolfberg,
former Developmental Editor at Lippincott Williams &
Wilkins, in appreciation of her detailed work in keeping
the production and editing of this book on track and for
her good humor at all times.

To Jacques Bouchard,
a special thank you to this special spine surgeon who
has updated for us all of the latest minimally invasive
spine techniques for the cervical, lumbar, and thoracic
regions. His organization, thoroughness, and dedication
to duty are exemplary. The whole team of authors
commends his work.

To the Orthopaedic and Trauma Team in Geneva.
A special thank you to Robin Peter, Nicolas Holzer, Jean-
Yves Beaulieu, Hermes Miozzari, Panayiotis Christofilo-
poulos, Tedi Cicavic, and Jean Fasel for carrying out the
dissections shown in the new videos. Also thanks to Toto
Gali and his team for filming them and Fredie Patane and
his team for editing and final production.
Contents

Introduction xviii

Chapter One The Shoulder 1
Anterior Approach to the Clavicle 2
Anterior Approach to the Shoulder Joint 4
Applied Surgical Anatomy of the Anterior Approach to the Shoulder Joint 17
Anterolateral Approach to the Acromioclavicular Joint and Subacromial Space 25
Lateral Approach to the Proximal Humerus 29
Minimally Invasive Lateral Approach to the Proximal Humerus 33
Minimally Invasive Anterolateral Approach to the Proximal Humerus 36
Applied Surgical Anatomy of the Anterolateral and Lateral Approaches 38
Posterior Approach to the Shoulder Joint 45
Applied Surgical Anatomy of the Posterior Approach to the Shoulder Joint 54
Arthroscopic Approaches to the Shoulder 57
Posterior and Anterior Approaches 59
Arthroscopic Exploration of the Shoulder Joint through the Posterior Portal 63

Chapter Two The Humerus 71
Anterior Approach to the Humeral Shaft 72
Minimally Invasive Anterior Approach to the Humeral Shaft 78
Posterior Approach to the Humerus 81
Anterolateral Approach to the Distal Humerus 88
Lateral Approach to the Distal Humerus 93
Medial Approach to the Distal Humerus 96
Applied Surgical Anatomy of the Arm 98

Chapter Three The Elbow 109
Posterior Approach to the Elbow with Olecranon Osteotomy 110
Posterior Approach to the Elbow without Olecranon Osteotomy 115
Anteromedial Approach to the Elbow 118
Posteromedial Approach to the Coronoid Process of the Ulna 122
Anterolateral Approach to the Elbow 125
Anterior Approach to the Cubital Fossa 131
Posterolateral Approach to the Radial Head 135
Applied Surgical Anatomy 139

Chapter Four The Forearm 147
Anterior Approach to the Radius 148
Applied Surgical Anatomy of the Anterior Compartment of the Forearm 155
Exposure of the Shaft of the Ulna 161
Chapter Five The Wrist and Hand 183

Dorsal Approach to the Wrist 184
Applied Surgical Anatomy of the Dorsal Approach to the Wrist 193
Volar Approach to the Distal Radius 196
Volar Approach to the Carpal Tunnel and Wrist 200
Volar Approach to the Ulnar Nerve 206
Applied Surgical Anatomy of the Volar Aspect of the Wrist 210
Volar Approach to the Flexor Tendons 219
Midlateral Approach to the Flexor Sheaths, Proximal and Middle Phalanges 224
Dorsal Approach to Phalanges and Interphalangeal Joints 227
Applied Surgical Anatomy of the Finger Flexor Tendons 229
Volar Approach to the Scaphoid 232
Dorsolateral Approach to the Scaphoid 235
Drainage of Pus in the Hand 238
Drainage of Paronychia 239
Drainage of a Pulp Space Infection (Felon) 240
Web Space Infection 241
Anatomy of the Web Space of the Fingers 243
Anatomy of the Web Space of the Thumb 244
Tendon Sheath Infection 244
Deep Palmar Space Infection 246
Drainage of the Medial (Midpalmar) Space 247
Drainage of the Lateral (Thenar) Space 250
Applied Surgical Anatomy of the Deep Palmar Space 252
Drainage of the Radial Bursa 253
Drainage of the Ulnar Bursa 255
Anatomy of the Hand 257

Chapter Six The Spine 261

Posterior Approach to the Lumbar Spine 262
Minimally Invasive—Posterior Approach to the Lumbar Spine 267
Applied Surgical Anatomy of the Posterior Approach to the Lumbar Spine 270
Anterior (Transperitoneal and Retroperitoneal) Approach to the Lumbar Spine 273
Anterior Retroperitoneal Approach to the Lumbar Spine 280
Applied Surgical Anatomy of the Anterior Approach to the Lumbar Spine 284
Anterolateral (Retroperitoneal) Approach to the Lumbar Spine 290
Posterior Approach to the Subaxial Cervical Spine 300
Applied Surgical Anatomy of the Posterior Approach to the Subaxial Cervical Spine 306
Posterior Approach to the C1-2 Vertebral Space 312
Applied Surgical Anatomy of the Posterior Approach to the C1-2 Vertebral Space 317
Anterior Approach to the Cervical Spine 318
Applied Surgical Anatomy of the Anterior Approach to the Cervical Spine 324
Posterolateral (Costotransversectomy) Approach to the Thoracic Spine 330
Anterior (Transthoracic) Approach to the Thoracic Spine 335
Posterior Approach to the Thoracic and Lumbar Spines for Scoliosis 344
Applied Surgical Anatomy of the Posterior Approach to the Thoracic and Lumbar Spines 349
Approach to the Posterior Lateral Thorax for Excision of Ribs 355
Chapter Seven Pelvis and Acetabulum 359
Pelvis 360
Acetabulum 360
Anterior Approach to the Iliac Crest for Bone Graft 361
Posterior Approach to the Iliac Crest for Bone Graft 364
Anterior Approach to the Pubic Symphysis 366
Anterior Approach to the Sacroiliac Joint 370
Posterior Approach to the Sacroiliac Joint 372
Applied Surgical Anatomy of the Bony Pelvis 376
Iliopsoas Approach to the Acetabulum 378
Applied Surgical Anatomy of the Iliopsoas Approach to the Acetabulum 387
Posterior Approach to the Acetabulum 394

Chapter Eight The Hip 403
Anterior Approach to the Hip 405
Minimally Invasive Anterior Approach to the Hip 418
Anterolateral Approach to the Hip 423
Lateral Approach to the Hip 433
Applied Surgical Anatomy of the Anterior, Lateral, and Anterolateral Approaches to the Hip 438
Posterior Approach to the Hip 444
Applied Surgical Anatomy of the Posterior Approaches to the Hip and the Acetabulum 451
Medial Approach to the Hip 456
Applied Surgical Anatomy of the Medial Approach 461

Chapter Nine The Femur 465
Lateral Approach 466
Posterolateral Approach 470
Anteromedial Approach to the Distal Two-thirds of the Femur 474
Posterior Approach 478
Minimally Invasive Approach to the Distal Femur 483
Minimally Invasive Approach to the Proximal Femur for Intramedullary Nailing 486
Minimally Invasive Surgery for Retrograde Intramedullary Nailing of the Femur 494
Applied Surgical Anatomy of the Thigh 497
Posterior Approach to the Femur 506

Chapter Ten The Knee 509
General Principles of Arthroscopy 510
Arthroscopic Approaches to the Knee 510
Arthroscopic Exploration of the Knee 513
Medial Parapatellar Approach 520
Approach for Medial Meniscectomy 526
Medial Approach to the Knee and Its Supporting Structures 533
Applied Surgical Anatomy of the Medial Side of the Knee 542
Approach for Lateral Meniscectomy 551
Lateral Approach to the Knee and Its Supporting Structures 555
Applied Surgical Anatomy of the Lateral Side of the Knee 560
Posterior Approach to the Knee 563
Applied Surgical Anatomy of the Posterior Approach to the Knee 570
Lateral Approach to the Distal Femur for Anterior Cruciate Ligament Surgery 574
Chapter Eleven The Tibia and Fibula 583
Anterolateral Approach to the Lateral Tibial Plateau 585
Posteromedial Approach to the Proximal Tibia 588
Posterolateral Approach to the Tibial Plateau 592
Posterior Approach to the Tibial Plateau 598
Minimally Invasive Anterolateral Approach to the Proximal Tibia 603
Anterior Approach to the Tibia 605
Minimally Invasive Anterior Approach to the Distal Tibia 609
Posterolateral Approach to the Tibia 611
Approach to the Fibula 617
Applied Surgical Anatomy of the Leg—Approaches for Decompression of a Compartment Syndrome 622
Minimally Invasive Approach for Tibial Nailing 626

Chapter Twelve The Foot and Ankle 633
Anterior Approach to the Ankle 634
Anterior and Posterior Approaches to the Medial Malleolus 638
Approach to the Medial Side of the Ankle 644
Posteromedial Approach to the Ankle 647
Posterolateral Approach to the Ankle 652
Lateral Approach to the Lateral Malleolus 657
Anterolateral Approach to the Ankle and Hindpart of the Foot 664
Lateral Approach to the Hindpart of the Foot 664
Lateral Approach to the Posterior Talocalcaneal Joint 669
Lateral Approach to the Calcaneus 673
Applied Surgical Anatomy of the Approaches to the Ankle 675
Applied Surgical Anatomy of the Approaches to the Hindpart of the Foot 683
Dorsal Approaches to the Middle Part of the Foot 685
Dorsal Approaches to the Metatarsophalangeal Joint of the Great Toe 688
Dorsomedial Approaches to the Metatarsophalangeal Joint of the Great Toe 691
Dorsolateral Approach for Bunion Surgery 693
Dorsal Approach to the Metatarsophalangeal Joints of the Second, Third, Fourth, and Fifth Toes 696
Dorsal Approach for Morton Neuroma 698
Applied Surgical Anatomy of the Foot 700

Chapter Thirteen Approaches for External Fixation 703
The Humerus 704
The Radius, Ulna, and Wrist 706
The Pelvis 710
The Femur 715
The Tibia and Fibula 716
The Ankle 717

Index 719
Introduction

Orthopaedic Surgical Technique

Surgical technique in orthopaedics varies from surgeon to surgeon; the more experienced the surgeon, the fewer instruments he uses and the simpler his technique becomes. Certain principles, however, remain constant. They are listed below as they apply to each surgical section.

The position of the patient is fundamental to any approach; it is always worth taking time to ensure that the patient is in the best position and that he is secured so that he cannot move during the procedure. Operating tables are well padded, but certain bony prominences—such as the head of the fibula and greater trochanter—are not. These prominences must always be padded adequately to prevent skin breakdown and nerve entrapment during surgery. Patients who are prone must have suitable padding placed under their pelvis, chest, head, and nose to allow respiration during surgery. Many different systems ensure adequate ventilation of the patient; bolsters placed longitudinally under the side of the patient are probably the best. Ventilation of the prone patient must be adequate before surgery, since repositioning of the patient during surgery is difficult and almost inevitably contaminates the sterile field.

The surgeon should be comfortable during surgery, with the patient placed at the correct height for the surgeon's size or the table low enough to allow him to operate sitting down.

In surgery on the limbs, a tourniquet is often used to create a bloodless field, avoiding identification of vital structures easier and expediting surgery.

To apply the tourniquet, empty the limb of blood, either by elevating it for 3 to 5 minutes or by applying a soft rubber compression bandage. The tourniquet should be padded with a soft dressing to prevent the wrinkles (and blisters) that inevitably occur when the skin is pinched. The tourniquet may be applied to the upper arm or thigh. Both of these areas are well muscled, but certain bony prominences—such as the head of the fibula and greater trochanter—are not. These prominences must always be padded adequately to prevent skin breakdown and nerve entrapment during surgery. Patients who are prone must have suitable padding placed under their pelvis, chest, head, and nose to allow respiration during surgery. Many different systems ensure adequate ventilation of the patient; bolsters placed longitudinally under the side of the patient are probably the best. Ventilation of the prone patient must be adequate before surgery, since repositioning of the patient during surgery is difficult and almost inevitably contaminates the sterile field.

The position of the patient is fundamental to any approach; it is always worth taking time to ensure that the patient is in the best position and that he is secured so that he cannot move during the procedure. Operating tables are well padded, but certain bony prominences—such as the head of the fibula and greater trochanter—are not. These prominences must always be padded adequately to prevent skin breakdown and nerve entrapment during surgery. Patients who are prone must have suitable padding placed under their pelvis, chest, head, and nose to allow respiration during surgery. Many different systems ensure adequate ventilation of the patient; bolsters placed longitudinally under the side of the patient are probably the best. Ventilation of the prone patient must be adequate before surgery, since repositioning of the patient during surgery is difficult and almost inevitably contaminates the sterile field.

The landmarks are critical to the planning of any incision. It is often convenient to mark them on the skin with methylene blue to ensure that the skin incision lines up with them.

All skin incisions heal with the formation of scar tissue, which contracts with time. For this reason, skin incisions should not cross flexion creases at 90 degrees; cutting perpendicular to flexion creases can cause contractures to develop over the involved joints. That is why incisions that cross major flexion creases are usually curved to traverse the crease at about 60 degrees. The techniques of the superficial and deep surgical dissections are the province of practical experience, not book knowledge. However, two techniques are frequently referred to in the book.

Subperiosteal dissection protects vital structures that lie near the bone, helping to prevent their damage by instruments. The rule holds true, but vital structures often lie on the periosteum itself. The posterior interosseous nerve, for instance, lies on the periosteum of the neck of the radius. The radial nerve lies on the periosteum on the back of the humerus. In these cases subperiosteal dissection must be strictly subperiosteal, something that may not be possible if the periosteum is damaged in case of fracture. The periosteum normally detaches easily from the bone except at sites of muscle or ligament attachments where it may adhere strongly. Blunt dissection may be difficult or impossible at the sites of insertion. Note that the periosteum of children is thicker than that of adults, more easily defined, and less adherent to bone. In fracture surgery subperiosteal dissection is rarely indicated except in the region of the proximal...
radius and the center of the humeral shaft. Subperiosteal stripping will destroy the periosteal supply of blood to the bone and if extensive will devitalize the fracture site. In such cases periosteal stripping is only permissible to allow accurate reduction of the fracture. The more experienced the surgeon becomes, the less soft-tissue damage he will need to create to allow accurate visualization and reduction of the fracture.

The second technique is that of detaching a muscle from the bone. Remember to strip into the acute angle that fibers make with the bone to which they attach. This is perhaps clearest in the fibula: To detach the peroneal muscles, pass an elevator from distal to proximal; to detach the interosseous membrane, where fibers run in a different direction, strip from proximal to distal.

Exposures can be improved in two ways. Local measures enhance the immediate exposure. Extensile measures allow the surgeon to expose adjacent bony structures. It is vital to appreciate that not all approaches are extensile: Specialized approaches should be used only in cases where the pathology is accurately pinpointed and where the surgeon does not have to expose any adjacent structures. Inadequate exposure is one of the most common causes of surgical failure. If the surgeon is in difficulty, one of the first things he should try is to improve the exposure either by local or by extensile means.
Video List

Anterior Approach to the Ankle
Approaches for Decompression of Lower Leg Compartment Syndrome
Approach to the Cubital Fossa
Dorsal Approach to the Wrist
Forearm Approach
Iliinguinal Approach to the Acetabulum
Lateral Approach to the Calcaneus
Lateral Approach to the Hip
Minimally Invasive Anterior Approach to the Hip

Minimally Invasive Approach to the Distal Femur
Minimally Invasive Lateral Approach to the Proximal Humerus
Posterior Approach to the Acetabulum with Surgical Dislocation of the Hip
Posterior Approach to the Distal Humerus
Posterior Approach to the Tibial Plateau
Posterolateral Approach to the Ankle
Volar Approach to the Distal Radius
Volar Approach to the Flexor Tendons