Contents

Preface xvii
Acknowledgements xxi
About the Authors xxiii

1 Infections of Populations: History and Epidemiology 2

Introduction to Viral Pathogenesis 3

A Brief History of Viral Pathogenesis 4
The Relationships between Microbes and the Diseases They Cause 4
The First Human Viruses Identified and the Role of Serendipity 4
New Techniques Led to the Study of Viruses as Causes of Disease 7

Viral Epidemics in History 8
Epidemics Shaped History: the 1793 Yellow Fever Epidemic in Philadelphia 8
Tracking Epidemics by Sequencing: West Nile Virus Spread to the Western Hemisphere 9
The Economic Toll of Viral Epidemics in Agricultural Organisms 9
Population Density and World Travel as Accelerators of Viral Transmission 10
Zoonotic Infections and Viral Epidemics 10

Epidemiology 10
Fundamental Concepts 11
Tools of Epidemiology 13
Surveillance 15

Parameters That Govern the Ability of a Virus To Infect a Population 16
Environment 16
Host Factors 19

Perspectives 22
References 23
2 Barriers to Infection 24

Introduction 25

An Overview of Infection and Immunity 25
 A Game of Chess Played by Age-Old Masters 25
 Initiating an Infection 27

Successful Infections Must Modulate or Bypass Host Defenses 29
 Skin 29
 Respiratory Tract 31
 Alimentary Tract 33
 Urogenital Tract 35
 Eyes 35

Viral Tropism 36
 Accessibility of Viral Receptors 36
 Host Cell Proteins That Regulate the Infectious Cycle 36

Spread throughout the Host 39
 Hematogenous Spread 40
 Neural Spread 42

Organ Invasion 45
 Entry into Organs with Sinusoids 45
 Entry into Organs That Lack Sinusoids 46
 Organs with Dense Basement Membranes 46
 Skin 47
 The Fetus 47

Shedding of Virus Particles 47
 Respiratory Secretions 48
 Saliva 48
 Feces 49
 Blood 49
 Urine 49
 Semen 49
 Milk 49
 Skin Lesions 49

Perspectives 50

References 50

3 The Early Host Response: Cell-Autonomous and Innate Immunity 52

Introduction 53

The First Critical Moments of Infection: How Do Individual Cells Detect a Virus Infection? 54
 Cell Signaling Induced by Receptor Engagement 55
 Receptor-Mediated Recognition of Microbe-Associated Molecular Patterns 55
 Cellular Changes That Occur Following Viral Infection 60
Adaptive Immunity and the Establishment of Memory 98

Introduction 99

Attributes of the Host Response 99
 Speed 99
 Diversity and Specificity 100
 Memory 100
 Self-Control 100

Lymphocyte Development, Diversity, and Activation 100
 All Blood Cells Derive from a Common Hematopoietic Stem Cell 100
 The Two Arms of Adaptive Immunity 101
 The Major Effectors of the Adaptive Response: B Cells and T Cells 101
 Diverse Receptors Impart Antigen Specificity to B and T Cells 107

Events at the Site of Infection Set the Stage for the Adaptive Response 108
 Acquisition of Viral Proteins by Professional Antigen-Presenting Cells Enables Production of Proinflammatory Cytokines and Establishment of Inflammation 108
 Antigen-Presenting Cells Leave the Site of Infection and Migrate to Lymph Nodes 111

Antigen Processing and Presentation 114
 Professional Antigen-Presenting Cells Induce Activation via Costimulation 114
 Presentation of Antigens by Class I and Class II MHC Proteins 115
 Lymphocyte Activation Triggers Massive Cell Proliferation 119

The Cell-Mediated Response 119
 CTLs Lyse Virus-Infected Cells 119
 Control of CTL Proliferation 122
 Noncytolytic Control of Infection by T Cells 122
 Rashes and Poxes 122
The Humoral (Antibody) Response 122
 Antibodies Are Made by Plasma Cells 122
 Types and Functions of Antibodies 125
 Virus Neutralization by Antibodies 125
 Antibody-Dependent Cell-Mediated Cytotoxicity:
 Specific Killing by Nonspecific Cells 127

Immunological Memory 128
Perspectives 130
References 130

5 Mechanisms of Pathogenesis 134

Introduction 135
Animal Models of Human Diseases 135
Patterns of Infection 136
 Incubation Periods 137
 Mathematics of Growth Correlate with Patterns of Infection 138
 Acute Infections 139
 Persistent Infections 143
 Latent Infections 150
 “Slow” Infections 157
 Abortive Infections 157
 Transforming Infections 157

Viral Virulence 158
 Measuring Viral Virulence 158
 Alteration of Viral Virulence 159
 Viral Virulence Genes 160

Pathogenesis 164
 Infected Cell Lysis 164
 Immunopathology 164
 Immunosuppression Induced by Viral Infection 168
 Oncogenesis 169
 Molecular Mimicry 170

Perspectives 172
References 172

6 Cellular Transformation and Oncogenesis 174

Introduction 175
 Properties of Transformed Cells 175
 Control of Cell Proliferation 178

Oncogenic Viruses 182
 Discovery of Oncogenic Viruses 182
 Viral Genetic Information in Transformed Cells 187
 The Origin and Nature of Viral Transforming Genes 189
 Functions of Viral Transforming Proteins 192
Activation of Cellular Signal Transduction Pathways by Viral Transforming Proteins 192
Viral Signaling Molecules Acquired from the Cell 192
Alteration of the Production or Activity of Cellular Signal Transduction Proteins 195

Disruption of Cell Cycle Control Pathways by Viral Transforming Proteins 201
Abrogation of Restriction Point Control Exerted by the Rb Protein 201
Production of Virus-Specific Cyclins 204
Inactivation of Cyclin-Dependent Kinase Inhibitors 204

Transformed Cells Must Grow and Survive 206
Mechanisms That Permit Survival of Transformed Cells 206

Tumorigenesis Requires Additional Changes in the Properties of Transformed Cells 209
Inhibition of Immune Defenses 210

Other Mechanisms of Transformation and Oncogenesis by Human Tumor Viruses 210
Nontransducing Oncogenic Retroviruses: Tumorigenesis with Very Long Latency 210
Oncogenesis by Hepatitis Viruses 213

Perspectives 214
References 214

Human Immunodeficiency Virus Pathogenesis 218
Introduction 219
Worldwide Impact of AIDS 219

HIV is a Lentivirus 219
Discovery and Characterization 219
Distinctive Features of the HIV Reproduction Cycle and the Functions of Auxiliary Proteins 222
The Viral Capsid Counters Intrinsic Defense Mechanisms 230

Cellular Targets 230
Routes of Transmission 231
Modes of Transmission 231
Mechanics of Spread 233

The Course of Infection 234
The Acute Phase 234
The Asymptomatic Phase 235
The Symptomatic Phase and AIDS 236
Variability of Response to Infection 236

Origins of Cellular Immune Dysfunction 237
CD4+ T Lymphocytes 237
Cytotoxic T Lymphocytes 238
Monocytes and Macrophages 238
B Cells 238
Natural Killer Cells 238
Autoimmunity 238

Immune Responses to HIV 238
Innate Response 238
The Cell-Mediated Response 238
Humoral Responses 239
Summary: the Critical Balance 240

Dynamics of HIV-1 Reproduction in AIDS Patients 241

Effects of HIV on Different Tissues and Organ Systems 242
Lymphoid Organs 242
The Nervous System 244
The Gastrointestinal System 245
Other Organs and Tissues 246

HIV and Cancer 246
Kaposi's Sarcoma 246
B Cell Lymphomas 248
Anogenital Carcinomas 248

Prospects for Treatment and Prevention 248
Antiviral Drugs 248
Confronting the Problems of Persistence and Latency 249
Gene Therapy Approaches 249
Immune System-Based Therapies 250
Antiviral Drug Prophylaxis 250

Perspectives 250
References 252

Vaccines 254
Introduction 255

The Origins of Vaccination 255
Smallpox: a Historical Perspective 255
Large-Scale Vaccination Programs Can Be Dramatically Effective 257

Vaccine Basics 260
Immunization Can Be Active or Passive 260
Active Vaccination Strategies Stimulate Immune Memory 261
The Fundamental Challenge 264

The Science and Art of Making Vaccines 265
Inactivated or "Killed" Virus Vaccines 265
Attenuated Virus Vaccines 269
Subunit Vaccines 270
Recombinant DNA Approaches to Subunit Vaccines 272
Virus-Like Particles 272
DNA Vaccines 273
Attenuated Viral Vectors and Foreign Gene Expression 274
Vaccine Technology: Delivery and Improving Antigenicity 275
 Adjuvants Stimulate an Immune Response 275
 Delivery and Formulation 276
 Immunotherapy 276

The Quest for an AIDS Vaccine 277
 Formidable Challenges and Promising Leads 277

Perspectives 279
References 279

9 Antiviral Drugs 282

Introduction 283
 Historical Perspective 283

Discovering Antiviral Compounds 284
 The Lexicon of Antiviral Discovery 284
 Screening for Antiviral Compounds 285
 Computational Approaches to Drug Discovery 287
 The Difference between “R” and “D” 288

Examples of Some Antiviral Drugs 293
 Approved Inhibitors of Viral Nucleic Acid Synthesis 293
 Approved Drugs That Are Not Inhibitors of Nucleic Acid Synthesis 298

Expanding Target Options for Antiviral Drug Development 300
 Entry and Uncoating Inhibitors 300
 Viral Regulatory Proteins 300
 Regulatory RNA Molecules 300
 Proteases and Nucleic Acid Synthesis and Processing Enzymes 301

Two Success Stories: Human Immunodeficiency and Hepatitis C Viruses 301
 Inhibitors of Human Immunodeficiency Virus and Hepatitis C Virus Polymerses 303
 Human Immunodeficiency Virus and Hepatitis C Virus Protease Inhibitors 306
 Human Immunodeficiency Virus Integrate Inhibitors 306
 Hepatitis C Virus Multifunctional Protein NS5A 308
 Inhibitors of Human Immunodeficiency Virus Fusion and Entry 309

Drug Resistance 309
 Combination Therapy 310
 Challenges Remaining 312

Perspectives 312
References 314

10 Evolution 316

Virus Evolution 317
Classic Theory of Host-Parasite Interactions 317
How Do Virus Populations Evolve? 318
Two General Survival Strategies Can Be Distinguished 319
Large Numbers of Viral Progeny and Mutants Are Produced in Infected Cells 319
The Quasispecies Concept 321
Sequence Conservation in Changing Genomes 321
Genetic Shift and Genetic Drift 324
Fundamental Properties of Viruses That Constrain and Drive Evolution 326
The Origin of Viruses 327
Host-Virus Relationships Drive Evolution 333
DNA Virus Relationships 333
RNA Virus Relationships 333
The Protopvirus Hypothesis for Retroviruses 335
Lessons from Paleovirology 335
Endogenous Retroviruses 336
DNA Fossils Derived from Other RNA Viral Genomes 337
Endogenous Sequences from DNA Viruses 337
The Host-Virus “Arms Race” 337
Perspectives 339
References 340
Emergence 342
The Spectrum of Host-Virus Interactions 343
Stable Interactions 344
The Evolving Host-Virus Interaction 345
The Dead-End Interaction 345
Common Sources of Animal-to-Human Transmission 347
The Resistant Host 348
Encountering New Hosts: Ecological Parameters 348
Successful Encounters Require Access to Susceptible and Permissive Cells 349
Population Density, Age, and Health Are Important Factors 350
Experimental Analysis of Host-Virus Interactions 350
Learning from Accidental Infections 351
Expanding Viral Niches: Some Well-Documented Examples 351
Poliomyelitis: Unexpected Consequences of Modern Sanitation 351
Smallpox and Measles: Exploration and Colonization 352
Notable Zoonoses 352
Hantavirus Pulmonary Syndrome: Changing Climate and Animal Populations 352
Severe Acute and Middle East Respiratory Syndromes (SARS and MERS): Two New Zoonotic Coronavirus Infections 352
Acquired Immunodeficiency Syndrome (AIDS): Pandemic from a Zoonotic Infection 353
Host Range Can Be Expanded by Mutation, Recombination, or Reassortment 354
Canine Parvoviruses: Cat-to-Dog Host Range Change by Two Mutations 354
Influenza Epidemics and Pandemics: Escaping the Immune Response by Reassortment 354
New Technologies Uncover Hitherto Unrecognized Viruses 355
Hepatitis Viruses in the Human Blood Supply 357
A Revolution in Virus Discovery 357
Perceptions and Possibilities 358
Virus Names Can Be Misleading 359
All Viruses Are Important 359
What Next? 359
Can We Predict the Next Viral Pandemic? 359
Emerging Viral Infections Illuminate Immediate Problems and Issues 360
Humans Constantly Provide New Venues for Infection 360
Preventing Emerging Virus Infections 361
Perspectives 361
References 362

12 Unusual Infectious Agents 364
Introduction 365
Viroids 365
Replication 365
Sequence Diversity 366
Movement 366
Pathogenesis 368
Satellites 368
Replication 369
Pathogenesis 369
Virophages or Satellites? 369
Hepatitis Delta Satellite Virus 370
Prions and Transmissible Spongiform Encephalopathies 371
Scrapie 371
Physical Nature of the Scrapie Agent 371
Human TSEs 371
Hallmarks of TSE Pathogenesis 372
Prions and the prnp Gene 372
Prion Strains 374
Bovine Spongiform Encephalopathy 374
Chronic Wasting Disease 376
Treatment of Prion Diseases 377
Perspectives 377
References 378

APPENDIX Diseases, Epidemiology, and Disease Mechanisms of Selected Animal Viruses Discussed in This Book 379
Glossary 407
Index 413