Contents

Preface xvii
Acknowledgments xxi
About the Authors xxiii

PART I
The Science of Virology 1

1 Foundations 2

Luria’s Credo 3

Why We Study Viruses 3
 Viruses Are Everywhere 3
 Viruses Can Cause Human Disease 3
 Viruses Infect All Living Things 3
 Viruses Can Be Beneficial 4
 Viruses Can Cross Species Boundaries 4
 Viruses “R” Us 4
 Viruses Are Unique Tools To Study Biology 5

Virus Prehistory 6
 Viral Infections in Antiquity 6
 The First Vaccines 7
 Microorganisms as Pathogenic Agents 9

Discovery of Viruses 10

The Definitive Properties ofViruses 12
 The Structural Simplicity of Virus Particles 12
 The Intracellular Parasitism of Viruses 14

Viruses Defined 17

Cataloging Animal Viruses 17
 The Classical System 17
 Classification by Genome Type: the Baltimore System 20
A Common Strategy for Viral Propagation 21
Perspectives 21
References 23

2 The Infectious Cycle 24
Introduction 25
The Infectious Cycle 25
The Cell 25
The Architecture of Cell Surfaces 27
The Extracellular Matrix: Components and Biological Importance 27
Properties of the Plasma Membrane 29
Cell Membrane Proteins 30
Entering Cells 31
Making Viral RNA 31
Making Viral Proteins 31
Making Viral Genomes 31
Forming Progeny Virus Particles 31
Viral Pathogenesis 32
Overcoming Host Defenses 32
Cultivation of Viruses 32
Cell Culture 32
Embryonated Eggs 35
Laboratory Animals 35
Assay of Viruses 36
Measurement of Infectious Units 36
Efficiency of Plating 39
Measurement of Virus Particles and Their Components 39
Viral Reproduction: the Burst Concept 46
The One-Step Growth Cycle 46
Initial Concept 46
One-Step Growth Analysis: a Valuable Tool for Studying Animal Viruses 49
Systems Biology 50
Perspectives 51
References 52

PART II
Molecular Biology 53

3 Genomes and Genetics 54
Introduction 55
Genome Principles and the Baltimore System 55
Structure and Complexity of Viral Genomes 55
- DNA Genomes 56
- RNA Genomes 58

What Do Viral Genomes Look Like? 59

Coding Strategies 60

What Can Viral Sequences Tell Us? 60

The Origin of Viral Genomes 61

The “Big and Small” of Viral Genomes: Does Size Matter? 65

Genetic Analysis of Viruses 65
- Classical Genetic Methods 66
- Engineering Mutations into Viral Genomes 67
- Engineering Viral Genomes: Viral Vectors 73

Perspectives 78

References 79

4 Structure 80

Introduction 81
- Functions of the Virion 81
- Nomenclature 82
- Methods for Studying Virus Structure 83

Building a Protective Coat 86
- Helical Structures 86
- Capsids with Icosahedral Symmetry 89
- Other Capsid Architectures 102

Packaging the Nucleic Acid Genome 104
- Direct Contact of the Genome with a Protein Shell 104
- Packaging by Specialized Viral Proteins 105
- Packaging by Cellular Proteins 105

Viruses with Envelopes 106
- Viral Envelope Components 106
- Simple Enveloped Viruses: Direct Contact of External Proteins with the Capsid or Nucleocapsid 109
- Enveloped Viruses with an Additional Protein Layer 109

Large Viruses with Multiple Structural Elements 111
- Bacteriophage T4 111
- Herpesviruses 112
- Poxviruses 113
- Giant Viruses 114

Other Components of Virions 116
- Enzymes 116
- Other Viral Proteins 116
- Nongenomic Viral Nucleic Acid 117
- Cellular Macromolecules 117

Perspectives 119

References 119
5 Attachment and Entry 122

Introduction 123

Attachment of Virus Particles to Cells 123
General Principles 123
Identification of Receptors for Virus Particles 124
Virus-Receptor Interactions 126

Entry into Cells 132
Uncoating at the Plasma Membrane 132
Uncoating during Endocytosis 135
Membrane Fusion 137
Movement of Viral and Subviral Particles within Cells 147
Virus-Induced Signaling via Cell Receptors 148

Import of Viral Genomes into the Nucleus 148
Nuclear Localization Signals 149
The Nuclear Pore Complex 149
The Nuclear Import Pathway 150
Import of Influenza Virus Ribonucleoprotein 151
Import of DNA Genomes 151
Import of Retroviral Genomes 151

Perspectives 153
References 154

6 Synthesis of RNA from RNA Templates 156

Introduction 157

The Nature of the RNA Template 157
Secondary Structures in Viral RNA 157
Naked or Nucleocapsid RNA 158

The RNA Synthesis Machinery 159
Identification of RNA-Dependent RNA Polymerases 159
Sequence Relationships among RNA Polymerases 161
Three-Dimensional Structure of RNA-Dependent RNA Polymerases 161

Mechanisms of RNA Synthesis 164
Initiation 164
Capping 168
Elongation 168
Template Specificity 169
Unwinding the RNA Template 169
Role of Cellular Proteins 170

Paradigms for Viral RNA Synthesis 170
(+)-Strand RNA 171
Synthesis of Nested Subgenomic mRNAs 172
(−)-Strand RNA 173
Ambisense RNA 174
Double-Stranded RNA 175
Unique Mechanisms of mRNA and Genome Synthesis of
Hepatitis Delta Satellite Virus 176
Why Are (−) and (+) Strands Made in Unequal Quantities? 177
Do Ribosomes and RNA Polymerases Collide? 179

Cellular Sites of Viral RNA Synthesis 179

Origins of Diversity in RNA Virus Genomes 182
 Misincorporation of Nucleotides 182
 Segment Reassortment and RNA Recombination 183
 RNA Editing 185

Perspectives 185

References 185

7 Reverse Transcription and Integration 188

Retroviral Reverse Transcription 189
 Discovery 189
 Impact 189
 The Process of Reverse Transcription 189
 General Properties and Structure of Retroviral Reverse Transcriptases 198
 Other Examples of Reverse Transcription 202

Retroviral DNA Integration Is a Unique Process 204
 The Pathway of Integration: Integrase-Catalyzed Steps 205
 Integrase Structure and Mechanism 210

Hepadnaviral Reverse Transcription 214
 A DNA Virus with Reverse Transcriptase 214
 The Process of Reverse Transcription 216

Perspectives 221

References 222

8 Synthesis of RNA from DNA Templates 224

Introduction 225
 Properties of Cellular RNA Polymerases That Transcribe Viral DNA 225
 Some Viral Genomes Must Be Converted to Templates Suitable
 for Transcription 226

Transcription by RNA Polymerase II 228
 Regulation of RNA Polymerase II Transcription 228
 Common Properties of Proteins That Regulate Transcription 234

The Cellular Machinery Alone Can Transcribe
Viral DNA Templates 235

Viral Proteins That Govern Transcription
of Viral DNA Templates 237
 Patterns of Regulation 237
 The Human Immunodeficiency Virus Type 1 Tat Protein Autoregulates
 Transcription 237
Contents

The Transcriptional Cascades of DNA Viruses 245
 Entry into One of Two Alternative Transcriptional Programs 254

Transcription of Viral Genes by RNA Polymerase III 257
 The VA-RNA I Promoter 257
 Regulation of VA-RNA Gene Transcription 259

Inhibition of the Cellular Transcriptional Machinery 259
Unusual Functions of Cellular Transcription Components 260
A Viral DNA-Dependent RNA Polymerase 260
Perspectives 262
References 263

Reproduction of DNA Genomes 266

Introduction 267
DNA Synthesis by the Cellular Replication Machinery 269
 Eukaryotic Replicons 269
 Cellular Replication Proteins 270
Mechanisms of Viral DNA Synthesis 271
 Lessons from Simian Virus 40 271
 Replication of Other Viral DNA Genomes 275
Properties of Viral Replication Origins 278
 Recognition of Viral Replication Origins 280
 Viral DNA Synthesis Machines 286
 Resolution and Processing of Viral Replication Products 287
Exponential Accumulation of Viral Genomes 288
 Viral Proteins Can Induce Synthesis of Cellular Replication Proteins 288
 Synthesis of Viral Replication Machines and Accessory Enzymes 290
 Viral DNA Replication Independent of Cellular Proteins 291
 Delayed Synthesis of Structural Proteins Prevents Premature
 Packaging of DNA Templates 291
 Inhibition of Cellular DNA Synthesis 291
 Viral DNAs Are Synthesized in Specialized Intracellular Compartments 292
Limited Replication of Viral DNA Genomes 296
 Integrated Parvoviral DNA Can Replicate as Part of the Cellular Genome 296
 Different Viral Origins Regulate Replication of Epstein-Barr Virus 297
 Limited and Amplifying Replication from a Single Origin:
 the Papillomaviruses 299
Origins of Genetic Diversity in DNA Viruses 301
 Fidelity of Replication by Viral DNA Polymerases 301
 Inhibition of Repair of Double-Strand Breaks in DNA 303
 Recombination of Viral Genomes 304
Perspectives 307
References 307
10 Processing of Viral Pre-mRNA 310

Introduction 311

Covalent Modification during Viral Pre-mRNA Processing 312
- Capping the 5' Ends of Viral mRNA 312
- Synthesis of 3' Poly(A) Segments of Viral mRNA 315
- Splicing of Viral Pre-mRNA 317
- Alternative Processing of Viral Pre-mRNA 322
- Editing of Viral mRNAs 325

Export of RNAs from the Nucleus 327
- The Cellular Export Machinery 327
- Export of Viral mRNA 327

Posttranscriptional Regulation of Viral or Cellular Gene Expression by Viral Proteins 330
- Temporal Control of Viral Gene Expression 330
- Viral Proteins Can Inhibit Cellular mRNA Production 333

Regulation of Turnover of Viral and Cellular mRNAs in the Cytoplasm 335
- Regulation of mRNA Stability by Viral Proteins 336
- mRNA Stabilization Can Facilitate Transformation 338

Production and Function of Small RNAs That Inhibit Gene Expression 338
- Small Interfering RNAs, Micro-RNAs, and Their Synthesis 338
- Viral Micro-RNAs 342
- Viral Gene Products That Block RNA Interference 345

Perspectives 345
References 346

11 Protein Synthesis 348

Introduction 349

Mechanisms of Eukaryotic Protein Synthesis 349
- General Structure of Eukaryotic mRNA 349
- The Translation Machinery 350
- Initiation 351
- Elongation and Termination 360

The Diversity of Viral Translation Strategies 362
- Polypeptide Synthesis 363
- Leaky Scanning 365
- Reinitiation 366
- Suppression of Termination 366
- Ribosomal Frameshifting 368
- Bicistronic mRNAs 368

Regulation of Translation during Viral Infection 368
- Inhibition of Translation Initiation after Viral Infection 369
- Regulation of eIF4F 372
12 Intracellular Trafficking 380

Introduction 381

Assembly within the Nucleus 382
 Import of Viral Proteins for Assembly 383

Assembly at the Plasma Membrane 384
 Transport of Viral Membrane Proteins to the Plasma Membrane 386
 Sorting of Viral Proteins in Polarized Cells 401
 Disruption of the Secretory Pathway in Virus-Infected Cells 404
 Signal Sequence-Independent Transport of Viral Proteins
to the Plasma Membrane 406

Interactions with Internal Cellular Membranes 409
 Localization of Viral Proteins to Compartments of the Secretory Pathway 410
 Localization of Viral Proteins to the Nuclear Membrane 411

Transport of Viral Genomes to Assembly Sites 411
 Transport of Genomic and Pregenomic RNA from
 the Nucleus to the Cytoplasm 411
 Transport of Genomes from the Cytoplasm to the Plasma Membrane 411

Perspectives 413
References 414

13 Assembly, Exit, and Maturation 416

Introduction 417

Methods of Studying Virus Assembly and Egress 418
 Structural Studies of Virus Particles 418
 Visualization of Assembly and Exit by Microscopy 418
 Biochemical and Genetic Analyses of Assembly Intermediates 418
 Methods Based on Recombinant DNA Technology 421

Assembly of Protein Shells 421
 Formation of Structural Units 421
 Capsid and Nucleocapsid Assembly 423
 Self-Assembly and Assisted Assembly Reactions 425

Selective Packaging of the Viral Genome and Other Components
of Virus Particles 430
 Concerted or Sequential Assembly 430
 Recognition and Packaging of the Nucleic Acid Genome 431
 Incorporation of Enzymes and Other Nonstructural Proteins 438
Acquisition of an Envelope 439
Sequential Assembly of Internal Components and Budding from a Cellular Membrane 439
Coordination of the Assembly of Internal Structures with Acquisition of the Envelope 440
Release of Virus Particles 441
Assembly and Budding at the Plasma Membrane 441
Assembly at Internal Membranes: the Problem of Exocytosis 444
Release of Nonenveloped Viruses 450
Maturation of Progeny Virus Particles 450
Proteolytic Processing of Structural Proteins 450
Other Maturation Reactions 456
Cell-to-Cell Spread 457
Perspectives 460
References 460

14 The Infected Cell 464
Introduction 465
Signal Transduction 465
Signaling Pathways 465
Signaling in Virus-Infected Cells 466
Gene Expression 470
Inhibition of Cellular Gene Expression 470
Differential Regulation of Cellular Gene Expression 474
Metabolism 477
Methods To Study Metabolism 477
Glucose Metabolism 479
The Citric Acid Cycle 483
Electron Transport and Oxidative Phosphorylation 484
Lipid Metabolism 486
Remodeling of Cellular Organelles 491
The Nucleus 491
The Cytoplasm 495
Perspectives 498
References 500

APPENDIX Structure, Genome Organization, and Infectious Cycles 501

Glossary 537
Index 543